
Introduction

A strong demand for oil products has created signifi-

cant environmental problems. For many years, dis-

charge of various oil-bearings wastes and accidental

spills of oil on land and in water streams have con-

taminated billion of tons of soil and sediment [1].

On the kinetic of oil oxidation also with catalytic

effect of additives, some recent papers were reported

[2, 3].

But in the field of oily wastes the most part of the

earlier works deals with the sample characterization

under isothermal and/or non-isothermal conditions

[4, 5]. The trend evidenced at the 13th ICTAC Con-

gress [6] was the modeling of sample/material behav-

ior in dynamic conditions and therefore the kinetic

studies should be performed on chemical well-

characterized samples.

In our previous work [5] the main difficulty was

due to the soil sample (a chernozem). Its inhomo-

geneity and the intrinsic complex composition of the

soil led to a rather speculative interpretation of the

obtained data.

The aim of the present work is to perform a ki-

netic study under non-isothermal conditions of the

thermal degradation of an artificial polluted model

soil. For modeling the inorganic micelle of the soil,

essentially a silico-alumina, we used a silica, an alu-

mina and a silico-alumina gel. As model for the oily

pollutant, di-octyl sebacate (DOS) was used.

Experimental

Materials

SO Silica, reagent grade, REAHIM,
St. Petersburg, Russia

AO Alumina, catalyst support, M. WOELM,
Eschwege, Germany

SAO Silico-alumina gel, chromatography,
CHEMAPOL, Praha, Czech Republic

The oil model DOS was a base grade synthetic oil.

The samples were prepared by impregnation of

the solid with oil, followed by trickling out the excess

oil. The mass of oil adsorbed is determined directly

from the TG curves.

Thermogravimetric analysis

The experimental data were obtained on a Perkin-

Elmer DIAMOND TG/DTG device, under dynamic

air atmosphere (100 mL min–1), using Al crucibles

and heating rates, �, of 5, 10, 15 and 20°C min–1, in

the range 50–500°C.

Results and discussion

In Fig. 1, three typical curves are presented.

In all three cases, the curves are well-defined and

the data are easy to interpret:

• the thermal degradation is due an oxidation process

(see the heat flow curves);

• by samples DOS/SO and DOS/SAO, the maximum

of reaction rate (DTG) coincide with the maximum
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of the heat flow; the exception by DOS/AO sam-

ples is certainly due a catalytic effect of alumina.

An argument for this is the maximum of DTG at

220°C for DOS/AO, instead of 240–260°C for the

other two samples

• the mass loss, �m, (mass%), i.e. the quantity of

DOS adsorbed, was:

DOS/SO 11.3%
DOS/AO 12.9%
DOS/SAO 9.9%

Kinetic analysis

At beginning, the TG data were processed by the

isoconversional method of Flynn–Wall [7] and

Ozawa [8]. Using the equation
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values of the activation energy corresponding to dif-

ferent conversion degrees were obtained. The data are

presented in Table 1.

The only acceptable dispersion of the E values is

that by oily silico-alumina. But generally, in the range

of �=0.3–0.6, the values of E are narrow enough for a

first approximation: by silica and silico-alumina, the

mean E values are the same, while by alumina, where

the E value is lower with 10–15 kJ mol–1, a catalytic

effect is obvious.

For comparison, the kinetic analysis was contin-

ued with the differential-isoconversional method by

Friedman [9].

From the generally accepted equation of the

non-isothermal kinetics:
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where � is the degree of conversion, � is the heating

rate and T is the temperature in K; the equation corre-

sponding to the Friedman’s differential isoconver-

sional method, was obtained:
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For �=const. and using various heating rates, the

plot ln[�(d�/dT)] vs. 1/T should by linear. From the slope

and the intercept of the straight line the value of

activation energy (E) and product [Af(�)] were obtained.

The values of the activation energy are presented

in Table 2.

There is an obvious variation of E vs. �, but this

is not monotonous, for a conversion function f(�) will

have been tested. By alumina and silico-alumina, the

622 J. Therm. Anal. Cal., 88, 2007

FEHER et al.

Fig. 1 Thermoanalytical curves at 10°C min–1 for:

a – DOS/SO, b – DOS/AO and c – DOS/SAO

Table 1 The activation energy vs. conversion by FWO method

Sample
Activation energy/kJ mol–1 for �=

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 main

DOS/SAO 74.1 72.1 72.2 73.5 74.0 74.4 75.4 75.3 74.7 74.0

DOS/SO 85.5 75.8 75.0 75.3 75.0 73.3 70.9 66.3 59.6 73.0

DOS/AO 51.7 54.0 57.7 59.5 58.0 63.1 64.1 66.1 67.5 60.2

Table 2 The dependence on conversion of the activation energy by Friedman’s method

Sample
Activation energy/kJ mol–1 for �=

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 main

DOS/SAO 63.9 65.4 72.3 76.2 75.7 73.9 70.4 68.7 79.1 71.7

DOS/SO 63.3 67.2 64.6 69.6 62.2 53.7 47.4 35.3 34.0 55.2

DOS/AO 71.3 54.5 60.7 61.3 60.0 60.9 58.6 70.5 70.9 63.2



main values obtained by FWO, respective Friedman’s

method are in a good agreement.

Due to the above mentioned uncertainty, we ap-

pealed to the non-parametric kinetic method [10–16].

By this method it is accepted that the reaction rate

can be expressed as a product of two separable functions:

rij=f(Tj)g(�i) (4)

Consequently, the experimental points obtained

by different heating rates �, can be expressed in a 3D

space, with the coordinates of (Tj, �i, rij).

These points are interpolated by a proper algo-

rithm and a continuous surface of the reaction rate

(according to Eq. (4)) is obtained (Fig. 2).

Also as a consequence of Eq. (4), this surface

can be suitable discretizated into an i×j square matrix:

M={rij} (5)

The columns account for the temperature Tj and

the rows refer to conversion degree �i, so that the

Eq. (5) can be rewritten as:

M={g(�i)f(Tj)} (6)

The NPK method uses the singular value de-

composition (SVD) algorithm [17] to decompose the

matrix M:

M=U(diag s)VT (7)

In this way the influence of the conversion re-

spective temperature are separated since:

• a vector u1 given by the first column of the matrix U

is analyzed vs. � to determine the conversion func-

tion g(�); we suggest the �esták–Berggren equa-

tion [18]:

g(�)=�m(1–�)n (8)

• a vector v1 given by the first column of the ma-

trix V is searched for the temperature dependence

f(T); a classical Arrhenius equation was suggested.

Also the SVD algorithm allows separating two

or more simultaneous steps of a complex process.

Indeed, if the observed reaction rate at�i and Tj is:

rij=r1(ij)+r2(ij)=g1(�i)f1(Tj)+g2(�i)f2(Tj) (9)

the corresponding matrix M became:

M=U1(diag s1)V 1

T+U2(diag s2)V 2

T (10)

and so two independent vectors u1 and u2 for simulat-

ing the conversion function, respectively two inde-

pendent vectors v1 and v2 for temperature dependence

should be obtained.

The contribution of each step to the total process

is quantitatively expressed by the explained variance,

�i, so that ��i=100%.

The obtained kinetic parameters are system-

atized in Table 3.

Remarkable by this method are the two separa-

tion abilities:

• between the temperatures, respective the conver-

sion dependent part of the reaction rate
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Table 3 The kinetic parameters according to NPK method

Sample � E/kJ mol–1 A/min–1 m n E=�(�E)

DOS/SAO
90.7
9.2

45.6
87.7

1.072�104

2.509�108
1
1

2
3/2

49.4

DOS/SO
92.6
7.1

44.7
54.8

5.959�103

5.476�107
2/3
1

2
1

45.3

DOS/AO
73.4
26.6

76.0
32.4

2.109�107

1.048�103
2
0

0
1/3

64.4

Fig. 2 The reaction rate surfaces for a – DOS/SO,

b – DOS/AO and c – DOS/SAO



• between one or two elementary steps of a complex

process

In a good agreement with the graphical re-

presentation, the oxidative degradation of the

adsorbed DOS takes place by one step in the case of

silica and silico-alumina (contribution of �<10% can

be neglected). By alumina, there are clearly two steps;

this is indicated also in Fig. 1b by a larger DTG and

HF peaks.

Regarding to the values of the activation energy,

by alumina, the mean value (E=�(�E)) is in a very

good agreement with these of FWO and Friedman’s

methods.

Conclusions

The thermooxidative decomposition of an adsorbed

DOS depends on the nature of the support. Because

the utilized support simulates the inorganic compo-

nent of a soil, the origin of the soil will influence its

thermal behavior. High alumina content in the inor-

ganic micelle will have a catalytic effect.

An apparent simply process on the TG curves is

in reality enough difficult to be studied from the ki-

netics point of view. Just in one case, on alumina, the

values of the activation energy are narrow. However,

the NPK method allows a less speculative separation

between the influence of temperature and conversion,

respectively a separation of a complex process into its

elementary steps.
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